

Home Search Collections Journals About Contact us My IOPscience

Charge distribution and optical properties of F+ and F centres in KNbO3 crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J. Phys.: Condens. Matter 9 L315 (http://iopscience.iop.org/0953-8984/9/22/001)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.151 The article was downloaded on 12/05/2010 at 23:09

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Charge distribution and optical properties of F⁺ and F centres in KNbO₃ crystals

E A Kotomin[†][‡], R I Eglitis[†][§] and A I Popov[†]

† Institute of Solid State Physics, University of Latvia, 8 Kengaraga, Riga LV-1063, Latvia

‡ Fachbereich Physik, Freie Universität Berlin, 14 195 Berlin, Germany

§ Fachbereich Physik, Osnabrück Universität, D-49069 Osnabrück, Germany

|| CIRIL, Rue Claude Bloch, BP 5133, 14040 Caen Cédex, France

Received 18 November 1996, in final form 9 April 1997

Abstract. Results of quantum chemical calculations for the F^+ and F centres in cubic and orthorhombic phases of a KNbO₃ perovskite ferroelectric are presented and analysed in the light of existing experimental literature. It is shown that one (two) electrons of the F^+ and F centres, respectively, are considerably delocalized, even in the ground state of defects, over the two Nb atoms nearest to the O vacancy, and other close atoms. They resemble more electron defects in partly covalent SiO₂ crystals (the so-called E'_1 centre) than F-type centres in ionic MgO crystals. We predict two or three absorption bands (depending on the crystalline phase) for each of the defects. The calculated absorption energies for the F⁺ centre are by 0.3–0.4 eV lower than those for the F centre.

Perovskite-type KNbO₃ crystals have numerous electro-optic and non-linear optic applications [1]. As the temperature lowers, KNbO₃ undergoes a sequence of phase transitions, from paraelectric cubic phase to ferroelectric tetragonal (at 708 K), then to the orthorhombic (at 498 K), and lastly to the rhombohedral (at 263 K) phase. The atomic positions in all these phases have been determined experimentally in [2]. It is well understood now that its properties are considerably affected by defects and impurities. In particular, reduced KNbO₃ crystals (containing oxygen vacancies) reveal short-time photorefractive response to short-pulse excitation which could be used for developing fast optical correlators [3]. On the other hand, its use for light frequency doubling is seriously affected by the presence of unidentified defects responsible for induced IR absorption [4]. It is also well known that the photorefractive effect, particularly important for holographic storage, depends on the presence of impurities and defects [5].

The oxygen vacancy, V_O , is quite a common defect in many oxide crystals [6]. It could be formed under high-energy particle irradiation or during the reduction process. Normally, these defects effectively trap electrons and become either neutral or positively charged with respect to the lattice (the so called F centres or F⁺ centres, respectively [7]). Only F⁺ centres are paramagnetic, but optical absorption is expected from both centres. One should note that only in MgO do the F⁺ and F absorption bands coincide in energy. There were a number of observations of F-type centres in oxides, including MgO, CaO, BaO, BeO, ZnO, ThO₂, Al₂O₃, Li₂O and GeO₂ [6–14]. The identification of the F and F⁺ centres is usually based on analogy with MgO, CaO [8, 11] and Al₂O₃ [13]: usually, the F⁺ absorption peak lies on the long-wavelength side of that for the F centre, its energy obeys the simple empirical (Mollwo-like) law discussed below, and the Stokes shift of the F⁺ centre luminescence is smaller.

0953-8984/97/220315+07\$19.50 © 1997 IOP Publishing Ltd

L316 *Letter to the Editor*

Recently, F-type centres were observed under electron irradiation in several perovskites: LiNbO₃ [15, 16], BaTiO₃ [17] and KNbO₃ [18]. The threshold energy values measured in these papers are consistent with the oxygen atom displacement. In LiNbO₃ F^+ and F absorption bands peak at 1.63 eV and 2.48 eV, respectively (see also [19]). The experimentally observed displacement energy implies a binding energy for oxygen of 64 eV for KNbO₃ and 57 eV for LiNbO₃, quite consistent with the value found for O displacement in other oxides, e.g., 60 eV for MgO [20] and 79 eV for Al₂O₃ [21].

To our knowledge, in niobate-type crystals so far there exisit only very simplified calculations of the F^+ centre absorption energy in LiNbO₃ and LiTaO₃ [22]. They are based on the point-ion or semi-continuum models, neglecting lattice relaxation around the defect and self-consistent treatment of the electronic density distribution. On the other hand, the qualitative theory for the F centres in perovskite ferroelectrics [23] predicts considerable delocalization of the electron density from V_Q towards the two nearest Nb atoms.

To answer these questions, as well as to clarify an assignment of the 2.7 eV absorption band in KNbO₃ [18], in this letter we perform self-consistent calculations of the atomic and electronic structure for the F^+ and F centres in KNbO₃ crystals.

We use a simplified, quantum chemical version of the Hartree–Fock method known as the intermediate neglect of the differential overlap (INDO) [24, 25]. This approach has been applied very successfully to calculations for many pure and defective oxide crystals, including MgO [26], α -Al₂O₃ (corundum) [27], TiO₂ [28], etc. In the recent studies of the pure KNbO₃ and KTaO₃ crystals [29, 30] their electronic structure, the equilibrium ground state structure for several ferroelectric phases, as well as Γ -phonon frequences, were reproduced in surprisingly good agreement with both *ab initio* calculations and available experimental data.

The INDO calculation scheme and the relevant computer code CLUSTERD were discussed in detail in [24, 25, 29]. This code allows us to perform both the cluster and periodic system calculations containing tens and hundreds of atoms as well as to carry out automated geometry optimization which is especially important in defect calculations. To avoid a problem of the boundary conditions well known for a cluster model, we use here the supercell model which is $2 \times 2 \times 2$ extension of the primitive unit cell, i.e. containing 40 atoms. Detailed analysis of the KNbO₃ parameterization for the INDO method is presented in [29]. It should be remembered here that only in the latter paper was considerable covalency of the chemical bonding in pure KNbO₃ obtained: the effective atomic charges found using the Mulliken population analysis are (in units of |e|): +0.543 for K, +2.019 for Nb and -0.854 for O. (More about ionicity of solids and definition of effective atomic charges found in [31].) This is in agreement with the effective atomic charges found in the experimental study for LiNbO₃ [32]. A high degree of covalency of the Nb–O bond might be expected from the intuitive electronegativity considerations and the fact of a strong overlap between O 2p and Nb 4d orbitals and partial densities of states.

To simulate the F centre, we started with a 40-atom supercell from which we removed one of the O atoms. In the cubic phase all O atoms are equivalent and have the local symmetry C_{4v} whereas in the orthorhombic phase there are *two* kinds of non-equivalent O atom whose symmetry is lower, C_{2v} or C_s . After the O atom is removed, the atomic configuration of surrounding atoms is re-optimized via a search of the total energy minimum as a function of the atomic displacements from regular lattice sites. Calculation of the adiabatic energy curves for the ground and excited states permits us to find the optical absorption energy using the so-called Δ SCF procedure, according to which the E_{abs} sought for is the difference between the total energies for the ground and excited state with the defect geometry fixed as in the ground state (a vertical optical transition). In the F⁺ calculations, for the supercell neutrality one K atom distant from V_O was also removed. This results in a reduction of the defect symmetry and additional displacements of the two nearest Nb atoms along the (010) and (100) axes. To study this charge compensation effect, we performed two kinds of calculation for the F⁺ centres: (i) allowing the two nearest neighbour Nb atoms (which remain equivalent) to displace along the (001) axis only (a *linear relaxation* valid in the limit of the large separation between the V_O and K vacancy), and (ii) allowing their non-linear displacements in an arbitrary direction.

To extend the basis set in the F-type centre calculation, additional 1s, 2p atomic orbitals were centred at the O vacancy. Their parameters were chosen close to those used by us in the F centre calculations in MgO [26]: the orbital exponents $\zeta(1s) = 0.65(au)^{-1}$, $\zeta(2p) = 0.50(au)^{-1}$, the relevant electronegativities are zero (1s) and -3 eV (2p), and the bonding parameters β are zero for both 1s and 2p orbitals, respectively. During the defect geometry optimization, we make no *a priori* assumptions on the electron density distrubution.

Let us discuss the results obtained for the two different KNbO₃ phases. The positions of 14 atoms surrounding the F and F⁺ centre in a *cubic phase* after lattice relaxation to the miminum of the total energy are given in table 1. The conclusion could be drawn that the largest relaxation occurs for the two nearest Nb atoms which are strongly displaced outwards the O vacancy along the (001) axis. This is accompanied by much smaller, outward displacement of K atoms and by an inward displacement of O atoms. The two Nb atoms give the largest (80%) contribution to the lattice relaxation energy given in table 2 whereas the O atoms give most of the rest energy gain (1 eV). To check the effect of the supercell size, we made calculations for the $3 \times 3 \times 3$ extended unit cell. The results do not change noticeably.

In the F^+ centre the two nearest Nb atoms are relaxed by 35% less (mainly along the (001) axis) than in the F centre, with the total energy gain less by 0.94 eV. In the arbitrary relaxation case additional Nb displacements along the (010) and (100) axes are only 3% of that along the (001) axis which is accompanied by the additional energy gain of 0.01 eV. This clearly demonstrates that our model of charge compensation via the K vacancy works very well.

The analysis of the effective charges of atoms surrounding the F centre shows that of the two electrons associated with the removed O atom only $\approx -0.6|e|$ is localized inside the V₀ and a similar amount of the electron density is localized by the two nearest Nb atoms.

For the F⁺ centre these quantities are -0.3|e| and -0.3|e|, respectively. Such a small portion of the electron density localized inside the O vacancy explains the large lattice deformation around the (formally neutral) F centre; the nearest cations are repelled from V_o which has a charge of +1.4|e|. This is in sharp contrast with our F centre calculations in MgO where both electrons are well localized and the lattice deformation is only 2% [26].

The F centre produces the local energy level, which lies approximately 0.6 eV above the top of the valence band. Its molecular orbital primarily contains contributions from the atomic orbitals of the same two nearest Nb atoms.

The orthorhombic phase of KNbO₃ is important since it is stable in a broad temperature range around room temperature and thus is subject to most studies and practical applications. The atomic positions for the *perfect* orthorhombic cell were calculated in the previous paper [29] and are reproduced at the top of table 3. The conclusion suggests that the agreement with the experimental data [2] is very good. The displacements of Nb atoms nearest to the V₀ are plotted in table 3 for both kinds of F centre existing in this phase. In fact, their displacements are very similar in magnitude and also close to those found for the cubic phase. The relevant relaxation energies are slightly less than for the F centre in the cubic

Table 1. Coordinates of three kinds of 14 atoms surrounding F and F⁺ centres placed at the coordinate origin in the cubic phase (in units of the lattice constant a = 4.016 Å).

F centre without additional AO								
Nb	0.00000	0.00000	$\pm(\frac{1}{2}+\Delta_z)$	$\Delta_x = 0.00000$	$\Delta_y = 0.00000$	$\Delta_z = 0.08319$		
Κ	$\pm(\frac{1}{2}+\Delta_x)$	$\pm(\frac{1}{2}+\Delta_y)$	0.00000	$\Delta_x = 0.01324$	$\Delta_y = 0.01324$	$\Delta_z = 0.00000$		
0	$\pm(\frac{1}{2}-\Delta_x)$	0.00000	$\pm(\frac{1}{2}-\Delta_z)$	$\Delta_x = 0.02372$	$\Delta_y = 0.00000$	$\Delta_z = 0.00447$		
0	0	$\pm(\frac{1}{2}-\Delta_y)$	$\pm(\frac{1}{2}-\Delta_z)$	$\Delta_x = 0.00000$	$\Delta_y = 0.02372$	$\Delta_z = 0.00447$		
F centre with additional AO								
Nb	0.00000	0.00000	$\pm(\frac{1}{2}+\Delta_z)$	$\Delta_x = 0.00000$	$\Delta_y = 0.00000$	$\Delta_z = 0.06550$		
Κ	$\pm(\frac{1}{2}+\Delta_x)$	$\pm(\frac{1}{2}+\Delta_y)$	0.00000	$\Delta_x = 0.00920$	$\Delta_y = 0.00920$	$\Delta_z = 0.00000$		
0	$\pm(\frac{1}{2}-\Delta_x)$	0.00000	$\pm(\frac{1}{2}-\Delta_z)$	$\Delta_x = 0.01920$	$\Delta_y = 0.00000$	$\Delta_z = 0.00334$		
0	0	$\pm (\tfrac{1}{2} - \Delta_y)$	$\pm (\tfrac{1}{2} - \Delta_z)$	$\Delta_x = 0.00000$	$\Delta_y = 0.01920$	$\Delta_{z} = 0.00334$		
F ⁺ centre without additional AO (non-linear Nb relaxation)								
Nb	Δ_x	Δ_y	$\pm(\frac{1}{2}+\Delta_z)$	$\Delta_x = 0.00150$	$\Delta_y = 0.00150$	$\Delta_z = 0.05231$		
F ⁺ centre without additional AO (linear Nb relaxation)								
Nb	0.00000	0.00000	$\pm(\frac{1}{2}+\Delta_z)$	$\Delta_x = 0.00000$	$\Delta_y = 0.00000$	$\Delta_z = 0.05231$		
Κ	$\pm(\frac{1}{2}+\Delta_x)$	$\pm(\frac{1}{2}+\Delta_y)$	0.00000	$\Delta_x = 0.00894$	$\Delta_y = 0.00894$	$\Delta_z = 0.00000$		
0	$\pm(\frac{1}{2}-\Delta_x)$	0.0000	$\pm(\frac{1}{2}-\Delta_z)$	$\Delta_x = 0.01742$	$\Delta_y = 0.00000$	$\Delta_z = 0.00286$		
0	0	$\pm(\frac{1}{2}-\Delta_y)$	$\pm (\tfrac{1}{2} - \Delta_z)$	$\Delta_x = 0.00000$	$\Delta_y = 0.01742$	$\Delta_z = 0.00286$		
F ⁺ centre with additional AO (non-linear Nb relaxation)								
Nb	Δ_x	Δ_y	$\pm(\frac{1}{2}+\Delta_z)$	$\Delta_x = 0.00120$	$\Delta_y = 0.00120$	$\Delta_z = 0.04180$		
F ⁺ centre with additional AO (linear Nb relaxation)								
Nb	0.00000	0.00000	$\pm(\frac{1}{2}+\Delta_z)$	$\Delta_{x} = 0.00000$	$\Delta_y = 0.00000$	$\Delta_z = 0.04180$		
Κ	$\pm(\frac{1}{2}+\Delta_x)$	$\pm(\frac{1}{2}+\Delta_y)$	0.00000	$\Delta_x = 0.00715$	$\Delta_y = 0.00715$	$\Delta_z = 0.00000$		
0	$\pm(\frac{1}{2}-\Delta_x)$	0.0000	$\pm(\frac{1}{2}-\Delta_z)$	$\Delta_x = 0.01361$	$\Delta_y = 0.00000$	$\Delta_z = 0.00227$		
0	0	$\pm (\tfrac{1}{2} - \Delta_y)$	$\pm (\tfrac{1}{2} - \Delta_z)$	$\Delta_x = 0.00000$	$\Delta_y = 0.01361$	$\Delta_z = 0.00227$		

Table 2. Calculated absorption (E_{abs} , eV) and Nb relaxation (E_{rel} , eV) energies for the F⁺ and F centres for the cubic and the orthorhombic phases.

Symmetry, phase	E_{abs}		E_{rel}			
F centre						
C_{4v} , cubic	2.73	2.97	_	3.70		
$C_{\rm s}$, orthorhombic	2.56	3.03	3.10	3.60		
C_{2v} , orthorhombic	2.72	3.04	3.11	3.60		
F ⁺ centre (non-linear Nb relaxation)	2.34	2.66	2.67	2.76		
F ⁺ centre (linear Nb relaxation)	2.34	2.66	_	2.75		

phase. Since the effect of phase transition on the local lattice deformation is small, we studied its consequences only for the F centre.

Let us analyse the *optical properties* of the defects under study. Because of the C_{4v} local symmetry of the F-type centres in the KNbO₃ cubic phase, its excited 2p-type state splits into two levels, one of which remains twofold degenerate. Our \triangle SCF calculations predict the two pairs of the absorption bands given in table 2. When the nearest Nb atoms in the F⁺ centre are allowed to displace non-linearly due to the presence of charge compensating

K vacancy, the degenerate highest excited state splits off into the two very close levels (separated by only 0.01 eV).

Around room temperature, in the orthorhombic phase, there exist two kinds of F-type centre associated with two non-equivalent O atoms shown in table 3 and revealing the C_{2v} and C_s symmetry. The corresponding three absorption bands for F centres are plotted in table 2. Their difference is the largest for the lowest in energy bands (0.16 eV) and negligible for the other two bands.

Table 3. Atomic coordinates for a perfect orthorhombic phase of KNbO₃ (in terms of lattice parameters a = 3.973 Å, b = 5.695 Å, c = 5.721 Å INDO calculated in [29], as well as the positions of the two Nb atoms nearest to the F centre related to a O(I) vacancy (point symmetry C_{2v}) and O(II) vacancy (symmetry C_s , respectively).

Atom	а	b	С	Δ				
Perfect crystal								
Κ	0	0	Δ_z	$\Delta_z = 0.0209$				
Nb	$\frac{1}{2}$	0	$\frac{1}{2}$					
OI	0	0	$\frac{1}{2} + \Delta_z$	$\Delta_z = 0.0347$				
O _{II}	$\frac{1}{2}$	$\frac{1}{4} + \Delta_y$	$\frac{1}{4} + \Delta_z$	$\Delta_y = -0.0028$	$\Delta_z = 0.0347$			
O _{II}	$\frac{1}{2}$	$\frac{3}{4} - \Delta_y$	$\frac{1}{4} + \Delta_z$	$\Delta_y = -0.0028$	$\Delta_z = 0.0347$			
F centres of C_{2v} symmetry: no additional AO								
Nb(I)	$\frac{1}{2} + \Delta_x$	0	$\frac{1}{2} + \Delta_z$	$\Delta_x = 0.08333$	$\Delta_z = 0.0132$			
Nb(II)	$-\frac{1}{2} + \Delta_x$	0	$\frac{1}{2} + \Delta_z$	$\Delta_x = -0.08333$	$\Delta_z = 0.0132$			
F centres of C _{2v} symmetry with additional AO								
Nb(I)	$\frac{1}{2} + \Delta_x$	0	$\frac{1}{2} + \Delta_z$	$\Delta_x = 0.0656$	$\Delta_z = 0.0106$			
Nb(II)	$-\frac{1}{2} + \Delta_x$	0	$\frac{1}{2} + \Delta_z$	$\Delta_x = -0.0656$	$\Delta_z = 0.0106$			
F centres of C _s symmetry: no additional AO								
Nb(I)	$\frac{1}{2}$	Δ_y	$\frac{1}{2} + \Delta_z$	$\Delta_y = -0.0468$	$\Delta_z = 0.02502$			
Nb(II)	$-\frac{1}{2}$	$\frac{1}{2} + \Delta_y$	Δ_z	$\Delta_y = 0.0244$	$\Delta_z = -0.03735$			
F centres of C _s symmetry with additional AO								
Nb(I)	$\frac{1}{2}$	Δ_y	$\frac{1}{2} + \Delta_z$	$\Delta_y = -0.0361$	$\Delta_z = 0.0192$			
Nb(II)	$-\frac{1}{2}$	$\frac{1}{2} + \Delta_y$	Δ_z	$\Delta_y = 0.0187$	$\Delta_z = -0.0286$			

In a number of crystalline oxides (MgO, CaO, SrO, BeO, Al_2O_3 , MgAl_2O_4, Y_3Al_5O_{15} [33] as well as in LaMgAl_{11}O_{19} [34]) the F⁺ absorption energy obeys a simple law:

$$E_{abs}(eV) = 44.4a^{-2} - 3.5a^{-1}$$

where $a = n^{-1/3}$ is a mean distance between two O atoms and *n* their concentration in the lattice.

Application of this relation to KNbO₃ gives, however, an absorption energy greatly exceeding the optical gap (3.8 eV). In our opinion, this demonstrates that niobates are a special case. Indeed, our results for the electronic density distribution are in a sharp contrast with what is known for the F centres in ionic oxides (in particular, in MgO [6, 7, 26]) where the two electrons are well localized by the V₀ in its ground state. Evidently, this discrepancy arises from a considerable degree of covalency of the chemical bonding of KNbO₃ which is neglected in most models of defects in this material (as well as in similar ABO₃ perovskites, e.g. [19]); the only exception we know is the X_{α} cluster calculation of the F centre in LiNbO₃ [35]. Electron defects similar to what we have observed are known,

in particular, in partly covalent SiO₂ crystals (e.g., in the so-called E'_1 centre an electron is also not localized inside V₀ but sits on the sp³ orbital of a neighbouring Si atom [36]).

In summary, we found that the ground state of the F centre is associated with a strong *symmetrical* relaxation of the two nearest Nb atoms outwards the O vacancy. These Nb atoms remain identical, i.e. we did not see formation of dipole moments of the Nb₁–V₀–Nb₂ type, as suggested in [23].

The relevant lattice relaxation energy of 3–4 eV (table 2) is typical for point defects in ionic and partly-ionic solids and by several orders of magnitude larger than the tiny energy gain due to phase transitions (meV per cell).

We assume that the 2.7 eV absorption band observed in electron irradiated crystals [18] is due to the F-type centres, and predict existance of two more absorption bands for both F and F^+ centres at room temperature.

RE has been supported by the Niedersächsische Ministerium für Wissenschaft und Kultur. EAK and AIP appreciate the financial support of the Latvian Council for Science (grant No 96.0666). The authors are grateful to E V Stefanovich for fruitful discussions and supplying them with the updated CLUSTERD code.

References

- Günter P and Huignard J-P (ed) 1988 Photorefractive Materials and Their Application (Springer Topics in Applied Physics 61, 62) (Berlin: Springer)
- [2] Hewat A W 1973 J. Phys. C: Solid State Phys. 6 2559
- [3] Zgonik M, Medrano C, Ewart M, Wüest H and Günter P 1995 Opt. Eng. 34 1930
- [4] Shiv L, Sorensen J L, Polzik E S and Mizell G 1995 Opt. Lett. 20 2271
- [5] Günter P and Kruminsh A 1980 Appl. Phys. 23 199
- [6] Crawford J H Jr 1983 Semicond. Insulat. 5 599
 Crawford J H Jr 1984 Nucl. Instrum. Methods B 1 159
- [7] Henderson B and Wertz J E 1977 Defects in the Alkaline Earth Oxides (London: Taylor & Francis)
- [8] Henderson B 1980 CRC Crit. Rev. Solid State Mater. Sci. 9 1
- [9] Agullo-Lopez F, Catlow C R A and Townsend P D 1988 Point Defects in Materials (London: Academic) pp 149–78
- [10] Shluger A, Itoh N and Noda K 1991 J. Phys.: Condens. Matter 3 9895
- [11] Kappers L A, Kroes R L and Hensley E B 1970 Phys. Rev. B 1 4151
- [12] Rose B H and Hensley E B 1972 Phys. Rev. Lett. 29 861
- [13] Lee K H and Crawford J H 1977 Phys. Rev. B 15 4065
- Lee K H and Crawford J H 1979 Phys. Rev. B 19 3217
- [14] Kappers L A, Gillam O R and Stapelbroeck M 1978 Phys. Rev. B 17 4199
- [15] Hodgson E R and Agullo-López F 1987 Solid State Commun. 64 965
- [16] Hodgson E R and Agullo-López F 1989 J. Phys.: Condens. Matter 1 10015
- [17] Hodgson E R and Agullo-López F 1990 Radiat. Eff. Defects Solids 119-121 891
- [18] Hodgson E R, Zaldo C and Agullo-López F 1990 Solid State Commun. 75 351
- [19] Sweeney K L, Halliburton L E, Bryan D A, Rice R R, Gerson R and Tomaschke H E 1985 J. Appl. Phys. 57 1036
- [20] Pells G P 1983 Radiat. Eff. 64 71
- [21] Agnew P 1992 Phil. Mag. A 65 355
- Ho F D 1986 Phys. Status Solidi b 138 693
 Ho F D 1984 Phys. Status Solidi b 122 337, and references therein
- [23] Prosandeyev S A, Fisenko A V, Riabchinski A I, Osipenko A I, Raevski I P and Safontseva N 1996 J. Phys.: Condens. Matter 8 6705
 - Prosandeyev S A and Osipenko I A 1995 Phys. Status Solidi b 192 37
- Prosandeyev S A, Teslenko M N and Fisenko A V 1993 J. Phys.: Condens. Matter 5 9327
- [24] Stefanovich E, Shidlovskaya E, Shluger A and Zakharov M 1990 Phys. Status Solidi b 160 529
- [25] Shluger A and Stefanovich E 1990 Phys. Rev. B 42 9664
- [26] Kotomin E A, Kuklja M M, Eglitis R I and Popov A I 1996 Mater. Sci. Eng. B 37 212

- [27] Kotomin E A, Stashans A, Kantorovich L N, Lifshitz A I, Popov A I, Tale I A and Calais J-L 1995 Phys. Rev. B 51 8770
 - Stashans A, Kotomin E A and Calais J-L 1994 Phys. Rev. B 49 14854
- [28] Stashans A, Lunell S, Bergström R, Hagfeldt A and Lindqvist S-E 1996 Phys. Rev. B 53 159
- [29] Eglitis R I, Postnikov A V and Borstel G 1996 Phys. Rev. B 54 2421
- [30] Eglitis R I, Postnikov A V and Borstel G 1997 Proc. SPIE (Int. Conf. on Advanced Optical Materials and Devices (AOMD) (August 1996, Riga)) 2967 150
- [31] Catlow C R A and Stoneham A M 1983 J. Phys. C: Solid State Phys. 16 4321
- [32] Lines M E 1970 Phys. Rev. B 2 698
- [33] Bunch J M 1977 Phys. Rev. B 16 724
- [34] Koryukin Yu N and Popov V V 1994 Inorg. Mater. 30 231
- [35] DeLeo G G, Dobson J L, Masters M F and Bonjack L H 1988 Phys. Rev. B 37 8394
- [36] Yip K L and Fowler W B 1975 Phys. Rev. B 11 2327